首  页 关于博脉 软件产品 硬件设备 培训课程 主要客户 联系我们
博脉 -- 专业 务实 周到
 
  产品介绍 Introduction
 [lnkBackToProduct]

  产品咨询 Enquiry
若您有任何产品的问题或需求,欢迎随时与我们联络。
我们将很乐意为您服务!
电邮:info@pomine.com
电话:(020) 2264 4217
传真:(020) 2264 4215

您还可以填写产品咨询表:

 产品信息 Products Info 
Stata 12 正式发布!
2011-07-28  广州博脉

w_w_w_._p_o__m_i_ne.c_o__m
知名统计软件 Stata 12 已经发布!Stata 12 的新特性如下:
w_w__w__.p__o_m_i_n_e._co_m_
New in Stata 12
www._po_mi_ne._c_o_m_
Stata 12 now shipping. Highlights are shown below. Select any header to find out more.
ww__w.po__min_e__._c__om
PDF of the Stata 12 announcement—click here.
w_ww__.p__o_mine.__c_om_
Also visit Overview: Why use Stata? and details of Stata’s capabilities.

Structural equation modeling (SEM)
w_ww.p_om__i__n__e_.co_m
sem (L1 -> m1 m2)
(L2 -> m3 m4)
(L3 <- L1 L2)
(L3 -> m5 m6 m7)
www_.__p_o_mi__n__e._com
Path diagrams
Graphical model builder
Standardized and unstandardized estimates
Modification indices
Direct and indirect effects
Score tests and Wald tests
Factors scores and other predictions
Goodness of fit
Estimation with groups and tests of invariance
Survey data and clustered data
Raw or statistical summary data
FIML estimation with missing at random (MAR) data
Maximum likelihood, ADF, and GMM estimation
Flexible extension of multivariate regression, instrumental variables, and simultaneous systems
Confirmatory factor analysis (CFA), correlated uniqueness models, latent growth models, multiple indicators and multiple causes (MIMIC), ...
More ...
ww_w__._pomin_e_._c_o_m

Contrasts
w_w_w.p_o_m_i_n_e_._c__om_
Compare reference or adjacent categories
Compare to grand mean
Orthogonal polynomials
Treatment effects
More ...
w__w__w__.p_omine._com
Pairwise comparisons
www__.p_om__i_ne_._c__om_
Compare means, intercepts, or slopes
Compare odds ratios
Bonferroni, Scheffé, Tukey, Dunnett, and other adjustments
More ...
w_w_w._po__m__i_n_e.co__m__
Margins plots
w_ww.p__omi__n__e_.co_m_
Profile and interaction plots
Margins, contrasts, and pairwise comparisons
Potential outcomes
Comparative graphs
More ...
w__ww_.__p__o_m_in_e__.__co_m
Multiple imputation
w_w_w_.p__om__i_n_e__.c__o_m
Chained equations
Conditional imputation
Impute separately within groups
Linear and nonlinear predictions
Measure simulation error
Panel data and multilevel models
Impute continuous, ordinal, cardinal, and count variables
More ...
w__w_w__.p_o_mine._c_om_

ROC analysis
w_w_w_._p_omin_e__._c_o__m__
Parametric and nonparametric
Adjustments for covariates
Case-control regression models
Bootstrap and model-based SEs
Area under the curve (AUC) and partial AUC
More ...
w__w_w__._p_omi_ne.c_om
Contour plots


Multilevel mixed-effects models
ww_w_.__p_o__mi_n__e.__c_o_m__
Complex survey data
Frequency and sampling weights
Robust and clustered SEs
Weighting at each level
Residual covariance structures: exponential, banded, and Toeplitz
More ...
w_w_w__._p__o_m_in__e__.c_om_
Excel® import/export
w_ww__._po_m__i_n_e_._co_m__
Preview tool
Adjust import based on preview
More data management: ODBC connections strings, EBCDIC, rename groups of variables, ...
More ...
w__w_w__._p__om_i__n_e__.co_m

Unobserved components model (UCM)
www.pomi_n_e__.__c__om_
Trend, seasonal, and cyclical components
Static and dynamic forecasts of components
Stochastic cycles
More ...
www.__p_om__in_e__.__c_o_m_
Automatic memory management
w__w_w_.__p_omi_n_e._co__m__
Automatically adjusts to dataset size
Tunable
Up to 1 terabyte of memory
w_w_w__._p_o_m_i_n_e_._co__m

ARFIMA
ww_w__.__po_m_i_n_e._co_m
Long-memory processes
Fractional integration
Robust variance estimates
Static and dynamic forecasts
Linear constraints
More ...
ww__w._p__omine__.co_m_
Interface
w__w__w_.__p_o_mi_n__e__.c_o_m
Manage variables, storage types, notes, and formats without leaving the main interface
Select variables using filters
Filter prior commands and search results
Tabbed Viewer
Jump to dialogs, related commands, and sections in the online help
Hide, show, reorder, and filter variables in the Data Editor
Preview before pasting data
PDF export of results and graphs
w__ww_.__p_o__m_ine__._c_om

Multivariate GARCH
ww_w_.p__o_min_e_._c_om_
Constant conditional correlations (CCC)
Dynamic conditional correlations (DCC)
Varying conditional correlations (VCC)
Multivariate normal and Students’ t errors
Robust variance estimates
Level and variance predictions
Static and dynamic forecasts
More ...
w_ww_.po_mi_ne_._c__o_m
Spectral density
www._p_o_m__in_e_.__com
Parametric estimates after ARIMA, ARFIMA, and UCM
Assess importance of frequencies
More ...
w_w__w_.p_o_mi_ne.c_om
Installation Qualification
w__ww_.__pomi__n__e_.c_o__m
Downloadable tool
Report for submission to regulatory agencies
More ...
w_w__w_.__p__o_m_ine_.__c_o_m_

Time-series filters
w_w_w.po_min_e._co_m__
Trend and cycle decompositions
Christiano–Fitzgerald band-pass filter
Baxter–King band-pass filter
Hodrick–Prescott high-pass filter
Butterworth high-pass filter
More ...
w_w__w_.p_o_m_i_n__e__._co_m_
Stata/MP
w__w_w_._po_mine_._co__m
More estimators
Up to 64 cores
More ...
w__w_w_.p_o_m__i_n_e_._c_om

Business calendars
w__ww__.__p_o_m_in__e._c_om_
Trading days
User definable
Lags and leads using business days
Conversions from standard calendar
More ...
www_._p_o__m__in_e._c_o_m_
More
w__w__w_._p_o_m_i_n_e.c_om
General statistics: functions for Tukey's Studentized range and Dunnett's multiple range, baseline odds for logistic regression, ...
Survey data: support for SEM, bootstrap and successive difference replicate (SDR) weights, goodness of fit after binary models, coefficient of variation,
Count data: truncated count-data regressions, probability predictions, robust and cluster-robust SEs for fixed-effects Poisson regression, ...
Panel data: probability predictions, multiple imputation support, ...
Survival data: goodness-of-fit statistic that is robust to censoring
Copyright ©2003- Guangzhou Pomine Info. Tech. Co., Ltd. 广州博脉信息技术有限公司 ©版权所有 (粤ICP备11101756号-1)